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Coordinate Transformations

Introduction

We want to carry out our engineering analyses in alternative coordinate systems. Most students
have dealt with polar and spherical coordinate systems. In these notes, we want to extend this
notion of different coordinate systems to consider arbitrary coordinate systems. This prepares
the way for the consideration of differential equations applied to irregular regions such as those
used in finite-element computer programs. Here we focus on the coordinate transformations
required to convert the differential equations, originally expressed in Cartesian coordinate
systems into other systems.

Notation for different coordinate systems

The general analysis of coordinate transformations usually starts with the equations in a
Cartesian basis (X, y, z) and speaks of a transformation of a general alternative coordinate
system (¢, n, ). This is sometimes represented as a transformation from a Cartesian system (x;,
X2, X3) to the dimensionless system (¢, &3, &3). The latter form of the transformation allows the
use of a compact notation, introduced below, known as implicit summation over repeated indices.
The task of determining the new coordinate system is the task of finding the appropriate
transformations ¢ = &(x, y, z), n = n(X, ¥, z), and ¢ = {(x, Yy, z). In the numerical subscript notation,
these transformations become &, =&1(X4, X2, X3), & =€2(X1, X2, X3), and &z =&3(X4, Xz, X3), These
three transformations can be compacitly written in vector notation: § = §(x).

In numerical analysis of complex engineering systems we have to form a mesh that fits the
boundaries of the system being analyzed. In such cases, €, n, and ¢ are the computational
coordinates which typically are fit to a simple grid where & =i, n; = j, and { = k. The maximum
and minimum values of the computational coordinates occur at the physical boundaries of the
item being analyzed. These computational coordinates then become the independent variables
in the equations. Thus we have to transform the differential equations we are analyzing from the
Cartesian coordinate system to the use of €, n, and C as the independent variables. In the
discussion below we present a general way to do this transformation.

The transformation of the differential equations requires information about transformation of the
space derivatives. The basic relations among the space derivatives are found from the equation
for the total differential of our new coordinate, d§;, where &; = §i(x4, X2, X3). Those basic equations
express the fact that a differential change in any of the x; coordinates in the original coordinate
system can cause a differential change in one of the §; coordinates. The general equation for d¢;
is given below.

de = Zf dx,+25idx, + %oidx, or de = za; ax, = Piax,  i=123 1]
OX

Xy 2 3 i

Equation [1] is written three ways. The first form shows all terms in the equation. The second
form notes that the three terms on the first equation are similar and can be regarded as a sum of
three separate terms using summation index j. The final form of equation [1] is similar to the
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second form, except that the summation sign is missing. This is a shorthand notation to simplify
writing such equations. In this shorthand, there is an implied summation over the terms with the
repeated index. (This is known as the Einstein summation convention.) We will use this
periodically to make it easier to write such equations. The final i = 1,2,3 just before the equation
number applies to all three equations for dg; it reminds us that the equation for dg; applies for the
three different values of i. In the remainder of these notes we will use often write terms in full to
remind readers who are not familiar with this convention that we are actually considering several
terms by the implied summation.

If we looked at the inverse problem of determining the differential changes in our original
coordinate system (x4, Xz, X3), from differential changes in the (¢, &, &3) coordinate system, we
would have the following analog of equation [1].

X dg + Xide, + Xide, or de =

Tog g Tt e, g,

We can write both equations [1] and [2] as matrix equations to show that the partial derivatives,
OX,;

o¢.
——Land— are related to each other as components of an inverse matrix. In matrix form,

0&; OX;

dx, d¢, 2

equation [1] becomes.

o0&, 0 04 |
e |2 % o
dég — 852 852 852 dX2 [3]
de X, X, X, dx
sl o, o0& o0& |[L%s
| 0% OX,  OXg |

Converting equation [2] to matrix form gives the following result.

ox,  ox,  OX, |
dx, 06, 05, 06 d&
| OoX,  OX, OX,
dx, |= ds, [4]
o | |96 05 o0& ||
3 OXg OX3  OXg %
105, Og, 0cs |

Equations [3] and [4] can only be correct if the two three-by-three matrices that appear in these
equations are inverses of each other. That is, the partial derivatives are related by the following
matrix inversion.
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05 o0& 04| [ox ox ox |
08, 05 05| | O 5
o X, x| |05 05 0f

08 0% 0L | X O 0%

o X, 0% | |0& 05 0%

If a matrix, B, is the inverse of a matrix, A, the components of b are given by equation [6]. In that
equation, M, denotes the minor determinant which is defined as follows. If A is an n-by-n
matrix, it has n? minor determinants, M;, which are the determinants of the (n-1) by (n-1) matrices
formed if row i and column j are deleted from the original matrix. The minor determinant is used
to define the cofactor, A; = (-1)""M;. The components of the inverse matrix are defined in terms
of this cofactor and the determinant of the original matrix, A.

A, ~1)"IM
For B=A", = = UM, [6]
Det(A) Det(A)
The determinant of the matrix on the right hand side of equation [5] is known as the Jacobian
determinant. The usual expansion for a 3x3 determinant gives the following expression for J.
oX, OX, 0%
0§ 05, 06
3 — Det OX | _[OX, 0%, 0%,
9g; ) |06 Og, 0&;
OXy OXy OXg
0, Og, 0&,
_ 0% 0% 0%y | 0%, 0% 0%, | 0% 0% 0%, 1

T 0605, 08, 050606, 0& 05, 04,
O 0 0% DX D4 X D% 0K 0%,

05, 0¢; 0¢5  0¢y 05, 055 05, 0¢; Oc;

Using equation [6] for the components of the inverse matrix, with the determinant in the
denominator set to J, we find the following relationships between the individual matrix
components in equation [5]. These derivatives are called the metric coefficients for the
transformation. In the equations below we write these coefficients in both the general form with
numerical subscripts and using the (x, y, z) and (¢, n, {) notation. The final term in each equation
is an alternative notation for partial derivatives. For example, x: is a shorthand for the partial

derivative OX/0& .

' We can view equations [5] and [6] as follows. We are trying to find the coefficients of the inverse matrix,
bj. Equation [5] shows that these components are given by the equation bij =0¢, /6Xj . (Le., the row

index, i, is in the numerator and the column index j is in the denominator.) According to equation [6], after
interpreting the determinant as the Jacobian, J, then we can write bij =0¢, /6Xj = Aji/J . But Ajis the

cofactor of the term in row j and column i of the Jacobian. From equation [5], we see that the term in this
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o0&, 1 OX, OXq _ X3 0%, or 8_§ ﬂﬂ_ﬂ oy ynzé 4y 8]
Xy 06, 053 05, 08, ox onog 0nog J
dg; _ 1] 9% OXy  OX; OXq or 0¢ _1ljoxoz oxor | _ X2Z,—XZ [9]
X, 0&; 08, 05, 08, oy 0¢g on 0nog J
05 _ 1| 0% 0%, _ 05 1l x oy x| _XYemXYy o
X, o0&, 0&, 653 agz oz J|onoc s on J
06y 11X & 0% 0% | o on L[y or &y o] Vel Vel
OX, 0&, 0F, 0O&, 0Z, x J|ocoE ofoc J
0f, _ 1] 0% 0% 0% % | on _1[ox oz ox oz | XZ—XZ, 2]
OX, 0, 0, 0&; 02, oy J|ogog oS J
0, _ 1| 0% OX, 0% OX, or on _lioxoy oxoy|_ X=Xy, [13]
X, 0F, 08, 0OF, 0 oz J| 6oL oL & J
06 L[, 0% 0% | 00 _1[oyér oy ar|_YeZ, Y.k 14
ox, J|0& 8&, 0F, 0&, oz J|o&on ono& J
05 1[04 06 04 o | o0 Lfoxe x| XZXr o
X, J|0¢, 05 0¢ 0%, | o J|onog 0gaon, J

aggzi{axl ox, % axz}: or O _ _[8x8y X 8y} XYy =XV o
J

2 06, 05, 05, 06, 0z 05 dn  0& dn

The simpler relationships for two-dimensional coordinate systems can be found from these
equations by recognizing that in such coordinates, there is no variation in the third dimension.
This means that there is no variation of x or y with {. Thus all derivative of x and y with respect to
¢ are zero. We set the derivative z; = 1 to modify equations [8] to [16] for two-dimensional
systems. This is equivalent to assuming a coordinate transformation of z = ¢ for this conversion.
The results of converting equations [8], [9], [11] and [12] to two-dimensional forms are shown

below
%ZE% or a_fziﬂ :ﬁ [17]
ox,  J|og, x Jlon| I

position is 8Xj/acfi . Thus we can make the following general statement about the results shown in

equations [8] to [16]: O, /5Xj equals the cofactor of axj/ﬁfi divided by the Jacobian, J.
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) [ ox | X
%:_l ﬁ or %:—l % —-__" [18]
ox, I, | oy Jlon| 3
O _ 1|\ | O _ _lloy| Ye [19]
ox,  J|0¢& | ox  Jlog|
95 _L\ox | o on_ljox| X [20]
ox, J|aé, oy Jlog| J

For the two dimensional case, the Jacobian has the simple form of a two-by-two determinant.

J_OXOy OXoy _
0F o 0F on

(Note that equation [16] is correct when we convert from three dimensions to two by setting z = .
The left hand side, z;, is equal to one. The terms in braces on the left-hand side are just the
definition of the Jacobian, J, for the two-dimensional case. Thus both sides of equation [16] are
equal to one in the two-dimensional case.)

XY, = XY, [21]

Transforming differential equations

We are now ready to transform the various vector operators from Cartesian coordinates to our
arbitrary coordinate system. We begin with the divergence because this is a transformation of
first derivatives. Subsequently we will consider the Laplacian which requires a transformation of
second derivatives. As usual we will regard second derivatives as first derivatives of first
derivatives and be able to apply the results of the first-derivative transformations to the results for
second derivatives.

Transforming the divergence

The divergence of a vector with Cartesian components F4, F,, and F3, in the x, y, and z
coordinate directions (here expressed as x4, Xo, and x3) is written as follows. (The second form
uses the implied summation over the repeated index; i.)

LS L L RN VY 122]

OX, OX, 6_x3 OX,

divF =

In computational fluid dynamics equations, the convection terms, with F; = pu;d, are given by this
divergence expression.

To carry out the grid transformation for the divergence, we recognize each Cartesian coordinate
can depend on all the other coordinates. Because of this, a change in any of the transformed
coordinates can be reflected as a change in any of the original coordinates. We can reflect this
dependence by writing the following equation to convert first derivatives in our Cartesian
coordinate system (with respect to any Cartesian coordinate, x;) to first derivatives in new
coordinate system where the coordinate variables are called &, 1, and C or &4, &, and &; or &;in
general.
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O&.
0 _060 omd o0 . 0 _05 0

i1=123 (23]
ox, OXx, 0& OX; 877 OX; a; 0% OX; 0&;

The second form of this equation has an implied summation over the repeated j index. We have
to apply this equation to each of the three terms in our divergence equation [22].

div E = oF, oOF N oF, N oF, _[ 04 oF, 877 oF, 6( oF,
OX, OX, 0OXy |OX, 0¢& axl on axl o¢

(05 0F, onoF, ocoR,) (osdF, anoF, o¢ oF,
OX, O  OX, On  0X, 0C ) \0X, 06 X, On 0%, OC

(24]

We can simplify the number of terms that we have to write by using the implied summation over
repeated indices of the summation convention. Here we repeat two indices, which allows us to
rewrite all nine terms on the left of equation [24] in the following compact notation.

i OF
ox, O,

DivF = [25]

The conversion of this form into a more useful result does not follow an obvious path. The initial
step in the conversion is done by first multiplying by the Jacobian of the transformation, J, and
applying the chain rule of differentiation to write the resulting JXdF terms as d(JFX) — Fd(JX).
This gives the following result.

JDiVE = Oc; OF, JF Oc; ~F, 85
ox, OF, ag ' ox, ag ax (26]
IXdF = d(JXF) - Fd(JX)

We continue to have two repeated indices that imply summation over both i and j. We can show
that the final term, multiplied by F;, is zero for each value of i by using the metric coefficient
relationships in equations [8] to [16]. We first get the following result for i = 1, using equations [8],
[11], and [14].

85 106 ), 0 (105 ), 0 (405 )_ 0 [ox 0 O 0%
65 6x 861 5X aéz % ) 0¢, 8>< " og\0¢, 0e, 0¢, o¢,

d [6x2 X, X, 6X3j+ ) (ax2 X, OX, ax3J
05,08, 05, 05,05, ) 06,06, 08, 08, 06

Carrying out the indicated differentiations gives the combination of mixed, second-order partial
derivatives shown below. Each of these derivatives occurs two times, once with a plus sign and
once with a minus sign. (The order of differentiation is also different, but mixed second order
derivatives are the same regardless of the order of differentiation.) A letter below the term with a
plus or minus sign indicates the matching terms that cancel. For example, the term labeled (+A)
has a plus sign in the equation that cancels the term labeled (-A).

[27]
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) (J 85,—]: O°X, X, 0% ox, | %, 0°x,  OX, 0°X,
o¢

% ) 08,08, 0c5 06,06, 0c3 06, 06,0¢; 06, 06,0,
(+A) (-B) (+C) (-D)
82x2 OXy 07X, X L% %y X, %X
552553 0g; 05,08, 063 0¢; 05,08, 06 05,08, [28]
(+E) =A) (+B) (-F)

%X, OX;  0°X, OXq L% 0% OX, 0°X
553551 0F, O0FDE, 05 0% 0508, 0F, 06,08,
(+D) (-E) (+F) (-C)

o (.0¢;
This shows that the F; _6 [J _6 L lterm in equation [45] is zero when i = 1. The proof that this
. X.
]

I
term is zero for i = 2 and i = 3 follows the same approach used above and is left as an exercise
for the interested reader. With all these terms zero, equation [45] gives the following result for the
transformed convection terms.

sovF=-2[r %] o pivp=l2[r% 129]
851 OX; J 8§ OX,

We can define the components of the differentiation by ; in the new coordinate system as
follows.

oe. _0E _ 0E _ OF
=, aiJ+F2 afjﬂ% afj
1 2 3

G, =F
OX:

[30]

With this definition, the divergence in our new coordinate system, with the new components G;,
becomes

[31]

10 [ %]_16.]6].

Div F=—— JF,
J o4, o% ) J 0S

Transforming the Laplacian

We can extend this result to derive a form for the Laplacian operator in the new coordinate
system. The Laplacian can be viewed as the divergence of a gradient. In Cartesian coordinates
the Laplacian is written as follows.

o’u o 62

Viu=—+ :
x> ox; 6

ou ou ou
= Div (grad u) = Div (8x1 €yt = ox, —€u t—— ox, e(a)j (32]

Here we have used e(), e2), and e to represent the usual unit vectors i, j, and k. We see that
the Laplacian represents the dlvergence of a vector whose components F; = au/ 0X; . However,
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we have just found an expression for the divergence in our new coordinate system by the
combination of equations [30] and [31]. Applying equation [30] with F; = c?u/c?xi gives.

G _plei_ouds; ouds; aude; ouls;

—F 2= - [33]
: OX;  OX; OX; OX, OX, OX, OX, OX; OXq

We want the derivatives of u with respect to our new coordinate system. To do this we use the
general relationship for partial derivatives that gives au/ OX; as derivatives of the new coordinate
system; we can show all terms or use the summation convention.

u_0uds  oudg  ouds _ dudg, 34

ox, 05 0x 05 O 0F 0% 0& 0

We can combine equations [33] and [34] to get a definition of G; that involves an implied
summation over the repeated indices i and k. In equation [35] we show all nine terms that result
from the implied summation over these two repeated indices.

o _0u 98 9, _8§j(a_u%+ ou 8¢, | au agaj

VU0E ox, ox,  Ox \O& Ox,  OE, Ox,  O& O,

[33]
+% 6_u%+ ou 8§2+ ou 0&, +5§j 8_u%+ ou 6§2+ ou 0¢&,
OX, \ 0& OX, 0&, OX, 0& OX, ) OX;\ 08 OX; 0&, OX;  0&; OX,
With this definition for G;, we can use equation [31] to write our Laplacian with the implied
summation over the j index.
vy 1996 1 0 |4 au oG %, [36]
J o0&, I oS, 0&, OX, OX

Equation [36] has three repeated indices (i, j, and k) which imply a summation over all possible
values of each index. This gives a total of 27 terms in equation [36]. The three explicit terms for j
=1, 2, and 3 are shown below. Each of these terms has an implied summation over the repeated
i and k indices.

vy L) 0 |y ouag ag )|, 0|, audg ag )|, @ |, auds 0& )|l 5
J |0& 0&, OX%; OX; o0&, 0&, OX; OX 0&, 0&, OX; OX
Another view of equation [36], shown below, contains all the terms forj= 1. The terms forj=2
and j = 3 are left as an implied summation over i and k.
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o0& 0& OX, OX, 0& OX, OX, 0O& OX; OX,

L M 0506, U Og, 05, , U O, Oy
0&, 0%, OX, 0&, OX, OX, 0&, OX; OX,

U 05,06, 0u 0805 | 0u 05,04
0&; OX, OX; 0&; OX, OX, O&, OXy OX,

L 0| 4[oudgag)|, |, auag as
o0&, "\og ox ox )| o0& | " og ox ox,
Equation [36] provides the most comprehensive form for the Laplacian in an arbitrary coordinate
system. We can apply it to the simplest example of cylindrical-coordinate systems where x =r
cos(0), y =rsin(0) and z = z. In our generalized coordinate system, the Cartesian coordinates

are found from the new coordinates by the following form of these transformations: x; = &,
cos(&y), X2 = &1 sin(&,) and x3 = E;3. The derivatives for this system are written below.

vm;{i{\,(ﬂ%%ﬂ%%ﬂ%%

(38]

OX OX . OX
a_glzcos(fz) gz_flsm(fz) a—§1=0
1 2 8
OX . OX OX
a—;zsm(fz) izé cos(&,) a—;zo [39]
1 2 3
X _g X _y P g
o0& o2&, 0&,

We use equation [7] to compute J using these derivatives.

:%fﬁx2 OXq +6x OX; OX, +8x OX; OX,
05, 0¢; g3 0¢y 05, 053 04, 0¢;, 0,
OXy OX, OX;  OX, OX; OXy3  OX; OX3 OX,
05,08, 08, 050,08, 050505
= [COS(fZ ][51 COS(fZ ][ ] [Sin(fz)][()][— §1Sin(§2)]+ [O][_ flsin(fz)][o]
- 0] cos(&)J0] - fsin(&,) - & sin(&, ]~ [eos(&,)JoJo] = &, [eos (&) +sin*(&,)] = &

[40]

We now have to use equations [8] to [16] to compute the derivatives 0¢, / OX; from the derivatives

found in equation [35] and the Jacobian.

%_i[éxz oX, 0% axz}_ 1
S

o 3|0 oz ae o | g (Gicos()1)- (0X0))= costcr) [41]

%—l 0%, 8X3_8x1 0X, :i P .
oX, B {553 08, 0F, Géj 3 [(O)(O) ( flsln(fz))(l)] sin(&,) [42]
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95 _1 {axl X, _ 9% K, } = L asinE))0)- 0N cosE)]=0 @3

ox, J|0&, 08, 008 | &
0gy _ 1| 0% OXg 0% 0% | _ 1 (s __Sin(5,)
ox [653 o2, ¢, acfj ;, [00)-(ein@)l=-=¢ o
0G5, _ 1| 0% 0%y OX 0% |_1 _ _ 00s(5,)
26 2] 2000 2520 o) 010~ 5L 45

0 _1fonox 24 0%| 1
0X; J

0& 08, 0&, 0& = El[(cos(é:z))(o)— (0)(sin(§2))] =0 [46]

0% _ 11 0% 0% 0% 0% |_ 1y ) )
ox 3 [a; oz, 82,0 ij [(5in(£,))(0)~ (& cos(&,) Y0)] = 0 u

S

o4 _t[ogox oxax] 1
ox, J

0, 08, 0&, 0%, | & [(= &sin(&,) )0) - (cos(&,) )0)] =0 (48]

CL Fiai—aiai} = L [(cos(&,) )& cos(5,)) - (- £,in(&,) Nsin(&,))] = 1 4o

ox, J|0& 08 0508 &

Before substituting these derivatives into equation [36] we note that we can rewrite equation [36]

as follows, defining By as the product of two different partial derivatives with respect to x; summed
over all three values of i.

o¢, 3¢,
vig=t 0|5 M0 )| L 05 M e g =05 % s
308, |"\ 08 ox ax, )| 308" ag, ox, ox

We can write the explicit definition of B (without the implied summation) as follows. Note that By
= Bjk-

o 9¢, aé] — 9, 8§j + 9 ij + 9g, a‘fi
9T ox Ox.  Ox, O%  OX, OX, O, OX,

[51]

Using the derivatives in equations [41] to [49] (and the result that J = &), we can write the factor
By from equation [50].

_ 06,06, , 96, 0¢,  Oc, 04
Hox, Ox,  OX, OX, Xy OX,

= cos?(&,) +sin’(&,) +0=1 [52]
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B, —p, 0505 0505 050, =cos(§2)(_5in(§2)j sin 52)(%5@2)] 402 0[53]
OX; OX;, OX, OX, OXy OX, & &
B, =B, = 001 955 01055 | 01 005 _ (e 1(0) 4 sin(£,)(0) + (0)(L) = O (54

OX, OX, OX, OX, OX; OX,

05,05, 0505 0505 _ (—sin(fz)f +[%J TR S

2o, OX, OX, DX, X, OXq & & :

B, =B, = 0, 0&; n 08, 08, n 0S, 06, _ (_ Sin(gZ)J(0)+ (_ COS—(‘);:Z)j(O)_i_ (0)(1) = 0[56]
OX, OX,  OX, OX, OXy OX4 & 3

1

_ 08,08, | 08,05, 05 04,

33 = =0%+0%+1°=1 [57]
OX, OX; OX, OX, OXy OXq

We see that all the values of By are zero unless j = k. This will always be the case for an
orthogonal coordinate system. For such a system we can rewrite equation [50] to set all terms
where j # k to zero.

(58]

— —+ JB +
0F 0 0 P0E  0& oL

Using the values of By, By,, and Bss, from equations [52], [55], and [57], and the result from
equation [40] that J = &,., we can write our Laplacian for cylindrical polar coordinates.

vzu—l(a g Ou 0 u ., 0 auJ

1 du 0 ou
(D) — 1 (2 [59]
é(aég( )851 8525 & 04, 8§3§( )aéj

Since the three coordinate directions are independent we can remove the x4 terms from the x,
and x3 derivatives and finally use the conventional r, 0, z coordinates to give the final result for the
Laplacian in cylindrical coordinates.

2

z_iigu 1 &% 6U 10 ou 162u+@
& 08, ' o0& ‘512 aégz 653 Cror or rz 00%  0z°

[60]

Laplace’s equation with variable properties

As noted above, the Laplacian can be viewed as the divergence of a gradient. Typically the
gradient times some physical coefficient, ', represents a flux term. If the physical coefficient is
constant, we can bring it outside the outer divergence operator and merge it with other terms in
the equation. However, if I' is not a constant, we have to leave it inside the outer divergence
operator. In this case, we replace equation[ 32] with the following equation in Cartesian
coordinates.



Coordinate transformations L. S. Caretto, April 26, 2010 Page 12

. . ou ou ou
Div (I'grad u) = Dlv[r [a—Xle(l) +&e(2) +8_x3e(3) H [61]

Here we have used e(y), e, and e, to represent the usual unit vectors i, j, and k. We see that
the Laplacian represents the divergence of a vector whose components F; = 8u/ OX; . However,

If we had included this G coefficient in our original derivation we would have obtained the
following result in place of equations [36] and [50].

o&.
Div(I'grad u):li rJ ou 05 95, :iiFJBkja—u [62]
J 9¢; 0&, OX; OX, J 9¢; o0&,

Vectors, areas and volumes in the new coordinates

Position vector and differential length

To start our considerations of vectors, areas, and volumes in a general coordinate system, we
consider a position vector, r, that is defined in a Cartesian coordinate space as follows with unit

vectors ex), € and e;;). The position vector is defined as follows in a Cartesian system. We use
either (x, y, z) or (x4, X2, X3) as our Cartesian coordinates..

F=Xe, + Y€y + 28, = X8 + X,€ 5 + X4€ 5, [63]

The derivative of the position vector, with respect to a particular new coordinate, &;, is given by
equation [64], which is also used to define the base vector, g, in the new coordinate system.

OX;

xr % € + . €t i €w ==, ;=9 1=123 [64]
dg; O 9¢; ¢ 9¢;

In the last expression, we use the summation convention over the repeated index j. The three
base vectors defined in equation [64] are the equivalent of the usual base vector that we have in
our Cartesian coordinate system. (However these g are generally not normal vectors. We can
use these base vectors to compute the differential vector length, dr, along any path in our new
coordinate system.

or or or or
dr = dé + dé, + dé, = dé =q,.d¢& =9,.d& +0,,,d&, +0,.,d 65
651 51 852 52 553 53 aéi égu g(|) §| 9(1) 51 g(z) 52 9(3) égs [65]

In the two middle terms of equation [65] we have used the summation convention. In future
equations we will use this convention — the summation over repeated indices — without further
comment. We can write an elementary length in Cartesian space, ds, as the magnitude of the dot
product of dr with itself.

(ds)* =|dredr|= (g(i)d‘fi )‘ (g(j)détj ): g *9(;dgdS; = g;d&dg, [66

Note that all the terms involving indices i and j have both indices repeated. Thus we sum over
both indices and we have nine terms in these cases.
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Metric coefficients

The dot product of two base vectors, g and gy, is defined g;, one of the nine components of a
quantity known as the metric tensor. From the definition of g; in equation [64], we can write g; as
follows. Here we use the following equation that summarizes the fact that the base vectors in the
Cartesian coordinate system are unit vectors which are mutually perpendicular. (Such a system
of vectors is called orthonormal): e-e = §j.

0 =0 oG _{axke }l:axme }_axk axme .o
i 90 T I T g K m |~ 5% (k) = (m)
’ YoLog 0| 0g; 05

67
_ 0%y X, s OX; OX, N OX, OX, N OX3 OX,4 7]
= o =
d¢; ¢ dg; 0¢;  0g; 0¢;  0g; 05
For example, in a cylindrical coordinate system, y; = x1€0s(Xz), Y2 = X4Sin(x2) and y3 = x3. We
have the following partial derivatives.
%:cos(xz) m:—xlsin(xz) %:0
0, 0, 0&s
%=sin(x2) aﬁ: X; COS(X,) %:O 68
0%, 0%, 0%, 168}
96, 9, 9,

Substituting these derivatives into equation [67], allows us to compute some of the g; components
for the cylindrical coordinate system.

g, = OX, OX, N 0X, OX, N OX3 OX4
Yoog 08 0508 04 08
_ 0% X + X, X, + X; Oy _ —X, SiN(X, ) €os(X, ) + X, sin(x,) cos(x,) +0=0

g =

2 aél 8‘):2 aél 852 aél 852 [69]
_ OX, OX, N OX, 0OX, N OX3 OX,y
Y0508 05,08 08,06,
OX, OX; OX, OX, OXy OX,

93 = + +
0553 0g3  0g3 053 Ogy 0c;
The remaining, unique, off-diagonal terms, g3 and g,3 can both be shown to be zero. The

remaining off diagonal terms, g»4, 931, and g3, are seen to be symmetric by the basic form of
equation [68]. These terms will also be zero.

=c0s’(x,)+sin’(x,)+0=1

=[x, sin(x,)]? +[x, sin(x,)]? + 0 = x?

=0+0+1=1

When the metric tensor has zero for all its off-diagonal terms, the resulting coordinate system is
orthogonal. In an orthogonal system, each base vector is perpendicular to the other two base
vectors at all points in the coordinate system. The differential path length given by equation [66],

which we use to define a new term, for orthogonal systems only h; = \/5..

(ds)? = g;d&dS, = (hidé:i)z = (hldégl)z + (h2d§2)2 + (h3d§3)2 [70]
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In the equation [69] example of cylindrical coordinates, we had \/a =h;=+/gs3=h3=1,and

22 = hp = Xy = 1. Thus the three terms in equation [70] are (dx)?, (rd6)? and (dz)>. We see that
h, = r multiplies the differential coordinate, d6, and results in a length. This is a general result for
any h; coefficient; this coefficient is a factor that takes a differential in a coordinate direction and
converts it into a physical length. This factor also appears in operations on vector components
for orthogonal systems. These factors are usually written in terms of Cartesian coordinates (x, y,
and z) by the following equations, that are a combination of equations [70] and [67].

2 2 2
hf:[ax N azj
0¢, 0&, 0¢,
xY (eyY (e
h§:[ + + J [71]
0s, s, 0¢,
2 2 2
hgz(ax NICA azj
0&, 0&, 0&;

Differential area

Now that we have an expression for the differential length in our new coordinate system, we can
derive equations for differential areas and volumes. From equation [66] we see that the length of

a path along which only one coordinate, say xi, changes, is given by the equation 4/gdxx (no
summation intended); the vector representation of this path is g4 dx«. To get an differential area
from two differential path lengths, we take the vector cross product of these two differential
lengths. The vector cross product gives the product of two perpendicular components of the
differential path lengths to calculate an differential area, (dS).

(dS)' = (9<j>d§j)x(9(k)d§k)=9(n xgndg;dg [72]
(no summation) i, j,k cyclic =123

The vector that results from the cross product is in the plus or minus x; coordinate direction
depending on which direction the surface is facing. The notion that i, j, and k are cyclic means
that we use only the following three combinations (i=1,j=2,k=3), (i=2,j=3,k=1),0or(i=3,]
=1, k=2). In order to compute the magnitude of the surface area, we need to compute the
magnitude of the vector cross product |g x g(k)|=\/|g(j) X gl*l9¢ X 9wl To obtain a useful result
from this definition, we need to use the following vector identity.

(AxB)e(CxD)=(AeC)(BeD)—(AeD)BeC) [73]

Using A = C = g and B = D = gy, gives the following result for the cross product of base
vectors.

(g(j) Xg(k)) i (g(j) ><g(k)) = (g(j) 'g(j))(g(k) 'g(k))_(g(j) 'g(k))(g(k) 'g(j)) =09« — gjzk [25]

With this expression, we can write the magnitude of the differential surface area in direction i as

follows.
(ds)’ =9 I _g]?kdé:jdfk [74]

(no summation) i, j,k cyclic =123
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Differential volume

We can take get a differential volume element by taking the vector dot product of differential area
element in equation [23] and the differential length element normal to the area. This gives the
differential volume element by the following equation.

dv = 9 .(g(j) xg(k))déidgjdék

: - : i [73]
(no summation) i, J,k cyclic =123

Just as we did for the differential area element, we also seek the magnitude of the vector term in
the volume element equation. This requires that we find the term |gg*(9¢) X 9w)| =

V190 (90 X 9w)I*190)°(9) X 9)l- To start this, we need the following vector identity.

[Ae(BXC)f =(AeA)(BxC)e(BxC)|-[Ax(BxC)f [76]

We can use the identity in equation [24] to substitute for the term (B x C) « (B x C). We can also
use the following identity to substitute for the A x (B x C) term.

Ax(BxC)=B(AeC)-C(AeB) [77]

Since we have only three basis vectors, we will use the following base vectors from equation [76]
in equation [77]: A=g), B =g, and C = g). Making these substitutions and recognizing that
the dot product gg;*g() = g, the metric coefficient, gives the following result.

[g(l) ® (g(z) X g(s))]2 = gll[gzzgsa - 953]_ 9123922 - 9122933 + 2913912923
= 01192933 + 913912923 913912925 — 911923925 = 913913922 — 912912033 [78]
= 0119293 + 951912925 + 951912925 = 911932923 — 931913922 — 9219120933

In rearranging equation [78], we have made use of the symmetry relationship for the metric tensor
components, g; = gy, in obtaining the third line. We see that this final line is just the equation for
the determinant of a 3x3 array. If we write this determinant as g, we have the following result for
the volume element.

dV =/gd&,dé,d&, = \[Det(g;)d& dé,de, [30]

The appendix contains a proof that the value of\/§ is the same as the value of the Jacobian
determinant in equation [7].

If we return to our previous example of cylindrical coordinate systems for which g1 = g33 =1, g
=x.°=r% and J12 = J21 = 913 = 931 = J23 = 933 = 0, the value of g is simply the product of the
diagonal terms which is equal to X+ or r? in the conventional notation. For this system, equation
[30] for dV gives the usual result for the differential volume in a cylindrical coordinate system,
dV = rdrdBdz.

Exercise: For the spherical polar system the three coordinates are x4, the distance from the
origin to a point on a sphere, x», the counterclockwise angle on the x-y plane from the x axis to
the projection of the r coordinate on the x-y plane, and x; = the angle from the vertical axis to the
line from the origin to the point. (These coordinates are more conventionally called r, 8, and @.)
The transformation equations from Cartesian coordinates (y4, y2, and y3) to spherical polar

coordinates are given by the following equations: x; = \/y12 +y,2 + Y52, Xp = tan ' (yaly4), and x3 =
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tan'1[\/y12 + y22/y3]. The inverse transformation to obtain Cartesian coordinates from spherical
polar coordinates is: y; = X4 COS(X2)sin(Xs), Y2 = X1 Sin(xz)sin(x3), and y3 = x4cos(x3). Find all
components of the metric tensor for this transformation. Verify that this is an orthogonal
coordinate system. What are the three possible differential areas for this system? What is the
volume element for this system?

Vector components in generalized coordinate systems

The simplest vector to consider in a generalized coordinate system is the velocity vector, v,
whose components are the derivatives of the coordinates with respect to time. We can define the
velocity component in a particular direction, x;, by the symbol v;. The definition of v; in the
arbitrary coordinate system, and its relationship to the Cartesian coordinate system is shown
below, where we have used equation [11] or [12] for the coordinate transformation, substituting
the notation of y; for the Cartesian coordinates.

v oI oy o dy, O dys O d (3]
dt oy, dt oy, dt dy, dt oy, dt

We see that the terms dy;/dt on the right-hand side of equation [31] are just the velocity
components in the Cartesian coordinate system. In addition, there is no particular reason to
assume that the original system is Cartesian, we could equally well use the notation X; for the
alternative coordinate system and the notation Vv; for the velocity components in that system. This
gives the following equation for the transformation of velocity components from one coordinate
system to another.

dx, ox dxi ox dx2 &x dxs Ox - % -  O% - OX -
V= —t == 4= 4 =—Vi+—Vo+—=-V3s=—V¢ [32]
dt  oxg dt  ox, dt  oOxs dt  oOxs OX2 OX3 OX«k

This transformation equation for components of the velocity vector can be contrasted with the
transformation equation for the components of the gradient vector. The gradient of a scalar, A;

written as VA, has the following equation in Cartesian coordinates.

VA= g—Ae(X) + %A‘e(y) + Z—Ae(z)
X Z

If we denote one component of this vector as a;, we can write this component and its coordinate
transformation into a new system

[33]

S _OA o _OA_0xi OA 0xi OA 0Oxi OA _0xi OA _ Oxi
L ox "Tox OX dxi OX, OXa  OX; OXa  OX, Oxk O,

a [34]

If we compare equation [34] for the transformation of the components of a gradient vector with
equation [32] for the transformation of the components of a velocity vector, we see that there is a
subtle difference in the equations. For transforming the gradient vector from the old 3;
components to the new a; components, the partial derivatives of the coordinates have X; in the
numerator. For the transformation of the velocity components from the old coordinate system, v;,
into the v; components of the new system, the old coordinates, %;, appear in the denominator. It
thus appears that we have two different equations for the transformation of a vector.
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What we have, in fact, is two different kinds of vectors defined by their transformation equations.
A vector that is transformed from one coordinate to system to another using equation [32] is
called a contravariant vector. One that transforms according to equation [34] is called a
covariant vector. (You can remember these names by if you remember that covariant vectors
have transformation relations for vector components in which the old coordinates are collocated
with the old vector components in the numerator of the transformation. The transformation
relations for contravariant vectors have the old coordinates and the old vector components
located in the opposite locations — old vector components in the numerator and old coordinates in
the denominator.) In accordance with these names we call the velocity a contravariant vector and
the gradient a covariant vector.

Although there are naturally two types of vectors, according to their transformation relationships,
these differences disappear for an orthogonal coordinate system. In addition, one can express a
covariant vector by its contravariant components and vice versa. The covariant vector
components represent the components along the coordinate lines. The contravariant
components represent the components along normal to a plane in which the coordinate value is
constant. A vector, such as velocity, always has the same magnitude and direction at a given
location in a flow. The only thing that varies in different coordinate systems is the say in which we
choose to represent the vector. In an orthogonal system, only our choice of coordinate system
changes the representation of the vector. In a nonorthogonal system we choose not only the
coordinate system, but also whether we want to represent the vector by its covariant or
contravariant components.

Although much of the original work on boundary fitted coordinate systems used different
representations of velocity components, most current day approaches used a mixed formulation.
The coordinate system is nonorthogonal, but we use Cartesian vector components. This is like
using a r-8-z coordinate system, but leaving the velocity components as vy, vy, and v,. This is not
a wise choice, but it is possible. When we are dealing with complex boundary-fitted coordinate
systems, the use of Cartesian vector components does produce simpler results for the CFD
calculations.

Appendix — Proof that J = g'2

If we write the typical element in the Jacobian in equation [7] determinant as L;, we see that this
element can be expressed by the following equation. (Here we are considering the
transformation from Cartesian coordinates, x4, X2, X3, t0 @ new coordinate system &, &>, &s.

_OX

=L A-1
ij ag} [ ]

We can write the value of a three-by-three determinant using the permutation operator, j, which
is defined as follows: g, is zero if any two of its indices are the same; it is +1 if the indices are an
even permutation of 123 and it is —1 if the indices are an odd permutation of 123. A permutation
of 123 is odd or even if an odd or even number of exchanges is required to get from 123 to the
given permutation. For example 123 requires 0 exchanges and is even; 132, 213, and 321
require one exchange and are odd; 231 and 312 require two exchanges and are even. All the
values of g are shown in the table below.

k=1 k=2 k=3

j=1 [j=2 [j=3 j=1 [j=2 [j=3 j=1 [j=2 [j=3
i=1 | 0 0 0 |i=1 [ o© 0 | 1 |i=t 1 0
i=2 | 0 0 1 |i=2 [ o 0 0 |i=2 | - 0
i=3 | 0 | -1 0 |i=3 | 1 0 0_|i=3 0 0
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The table shows that only six of the e values are nonzero. Using this operator and the
summation convention over repeated indices gives the following formula for a three-by-three
determinant

3 3 3
Det(A) = Zzzgijkaiiazj'ask = Eij Ay, [A-2]

i=1 j=1 k

LN

Although there are a total of 27 possible terms in this summation, all but six of them have a zero
value for g ; three of the nonzero values are +1 and three are -1 which will give us the usual
formula for the expansion of a three-by-three determinant. An equivalent formula reverses the
subscripts of the a,, terms in this equation.

3 3 3
Det(A) =D D> 63,858, = €381 ,85 [A-3]
i=1 j=1 k=L
Using these expressions, we can define the Jacobian determinant as follows
i bl jlacd = bl oLy [A-4]
We can next substitute equation [A-1] for L; into equation [A-4].

OX, OX, OXq 0%, OXj O,
J= uk_ =&k = [A-5]
OX; OX; OXy oX, ax 0%,

To compute J?, with a view to comparing it to the determinant, g, we write the two factors in J?
with the two different forms of equation [10d], being careful to use two different sets of |nd|ces to
note that each determinant has a separate expansion. This gives the following result for J.

2 _ OXy OX, O%q OX,, OX, OX, OX, OX, OX3 OX, OX, OX,
J uk gmno — — - guk mno [106‘]
8x OX; OX, X, OX, OX, 6‘)‘( OX; OX, OX; OX, O,
If we expand the gnn, permutation operation in this equation we get the following resuilt.
324 OXy OX, 0%y OX, OX, 8x3 OXy OX, OXg OX, OXg OXy.
OX; OX; OX, OX; OX, OXq 8x OX; OX, OX, OX, 8x3
OXy OX, OXg OX3 O%; OX,  OX; OX, OX3 OX, OX; OXg (o

OX; OX; OX, OX OX, OX3  OX; OX; OX, OX; OX, OXq
_OX, OX, OX3 OX; OX, 0% OX; OX, OX3 OX; OX3 OX,
OX; OX; OX, OX, OX, OX;  OX; OX; OX, OX; OX, OX,

Next, we use equation [10b] to write the determinant of the metric tensor, g.

9 =¢%9192; 9 [10g]
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From equation [18], we can write the definition of g;, (without the implied summation over the
repeated index.)

0K O X Oy | X OKy

9i == = w—— — [10h]
Voox ox; OX OX; X, OK,
We can combine equations [10gf] and [10h] to obtain the following expression for the
determinant, g:
X X, OX X, OX
9 = & 8__1%+6T28__2+&8__3 X
oX, OX; OX OX.  OX OX
[10i]

ox o O 0 | 0% % | (3 0 0% B Bx 3K
X, OX, X, OX, O%, X, | (0%, X, 0%, 0%, 0K, OX,

]

Multiplying out the terms in parentheses gives the following equation for g.

. (% X, X, O 0% DXy Oy X, X, O O, Oy 9%, 0% % Oy O O
"\ ox, O%; OX, OX, OX, 0%,  OX, OX, OX, OX, X, OX, 0%, OX; OX, OX; OX, 0K,
+%%ax2 OX, 0% 0%y +%%6x2 OX, OX, OX, +%%8x2 OX, OX3 OXq
OX, OX; OX, OX; OX3 OX, 0%, OX; OX, OX; OX3 OX,  O%; OX; OX, OX; OX5 OX,
OXy OX; OX3 OX; OX; 0%, N OX, OX; 0%y OX3 OX, OX, N OX; OX; OX3 OX3 OX3 OXq
OX, OX; OX, OX; OX3 OX,  OX, OX; OX, OX; OX; OX,  OX, OX; OX, OX; OX; OX,
OX, OX, OXy OX; OX; 0% N 0X, OX, OX; OX; OX, OX, N OX, OX, OXy OX; OX3 OXq
OX, OX; OX, OX; OX; OX,  OX; OX; OX, OX; OX; OX,  OX; OX; OX, OX; OX; OX,
N OX, OX, OX, OX, OX; 0% N OX, OX, OX, OX, OX, OX, N OX, OX, OX, OX, OX3 OXg
OX, OX; OX, OX; OX; OX,  OX; OX; OX, OX; OX; OX, 0%, OX; OX, OX; OX; OX,
N OX, OX, OXy OXy OX; 0%, N OX, OX, OXy OX53 OX, OX, N OX, OX, 0%y OX3 OX3 OXg
OX, OX; OX, OX; OX; OX, 0%, OX; OX, OX; OX; OX, 0%, OX; OX, OX; OX; OX,
N OX3 OX3 OX; 0% O%; OX N OX3 OX; OX; O%; OX, OX, N OX3 OX3 OX; O%; OXg OXq
OX, OX; OX, OX; OX3 OX,  OX; OX; OX, OX; OX3 OX,  OX; OX; OX, OX; OX; OX,
N OX3 OX3 OX, OX, 0% OX N OX3 OX3 OX, OX, OX, OX, N OX3 OX3 OX, OX, OX3 OX4
OX, OX; OX, OX; OX3 OX,  OX; OX; OX, OX; OX; OX,  OX; OX; OX, OX; OX; OX,

[10]

OX3 OX3 OX3 OX3 O%; 0% N OX;3 OX3 OX; OXg OX, OX, N OX3 OX3 OX; OX3 OXg OXg
OX, OX; OX, OX; OX3 OX,  OX; OX; OX, OX; OXy OX, 0%, OX; OX, OX; OX,; OX,

We want to show that equation [10f] for J? gives the same result as equation [10j] for g. We see
these equations are sums of terms in that have the same general form. Each term is the product

of six partial derivatives that can be expressed as axi/axj . Furthermore the denominators of the
partial derivatives in each term have the six common indices i, j, k, 1, 2, and 3. However, the
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indices in the numerator of the partial derivatives in equations [10f] and [10j] are not the same.
Although both equations limit the indices to 1, 2 or 3, equation [10f] has each index occurring
exactly two times, while equation [10j] has terms where one or two indices may not be present in
the numerator of the partial derivative.

The difference in the partial-derivative numerators between equations [10f] and [10j], as well as
the larger number of terms in equation [10j], suggests that some terms in equation [10j] will
cancel when the permutation operator is applied. We can show, by one example, that this will
always be the case when one of the indices is missing from the numerator terms in equation [10j].
Examine the typical term where there are only two indices in the numerator. The sum of all six
terms generated by the permutation operator in this case is shown below. |dentical terms
occurring with both a plus and minus sign are indicated by capital letters with a plus or minus
sign, below the term.

Eijk ax_m o a)im a)im a)in ﬁfn
OX, OX; OX, OX; OX; OX,
_ Oy Oy Oy Xy O, OX, N OX,, OX,, OX,, OX, OX, OX,
o0X, OX; OX, OX, OX; OX; OX; OX, OX, OX; OX; OX;
(A) (B)
N Xy Xy Oy OXpy OX, 0Ky OXy OXyy Oy OXyy OX,, OX,
0X, OX; OX, OX; OX; OX, OX; OX, OX, OX; OX; OX,
(©) (=A)
0%y OXy OXyy OXyy OX, OX,  OXpy OXy OXpy OX,y OX, O,
OX, OX; OX, OX, OX; OX, OX; OX; OX, OX; OXy OX,
(-B) (-C)
We see that these terms all cancel. Although we have made this demonstration in the case
where the first four indices were the same and the last two indices were the same, we would
obtain the same result, regardless of the location of the different indices. We thus conclude that
all terms in equation [10h-1b], which do not have all three indices in the numerator will vanish

when the permutation operator is applied. Eliminating all such terms from equation [10j] gives the
following result.

[10K]

. (% 0%y DXy 0%y Ok OXy | Oy %y O Xy X, O,y
"\ o%, %, OX, OX, 0%, OX,  OX, OX; OX, OX; OX, 0K,

OX, OX, OX; OX; OX3 O%g N OX, OX, OX3 0%y OX; O%

OX, X, OX, 0K, OX, OX,  OX, O, OX, O, 0%, K,

%y 0%y 0%y 0%, O, OX, | Og OX; OX, 0%y %, ale

0%, OX; X, 0K, OX, 0K, 0%, 0K, OX, OX; 0%, O,

+ [101]

We want to have the same result for equations [10f] and [10I]. It is not apparent that these are

then same. In fact, the terms in [10l] all have positive signs, but half the terms in equation [10f]
have negative signs. To show that these are the same require further rearrangement. We start
by rearranging equation [10f] to make it look more like [10I].
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OX, OX; OX, OX, OX; OX, N OX, OX, OX, OX, OX; OX,

"\ ox, ox, O, X, 0%, OX, 0%, OX, OX, X, OX, OX,
N OX, OX; OX, OX, OX3 OX3  OX; OX%; OX, OX, OX; OXg
OX, 0%; OX; 0X; 0X, OX,  OX, 0X; OX; OX; 0% OX,
_ 0%y OX; OX, OX, OX3 OX; 0% OX; OX, OX, OX3 OXg
OX; OX; OX, OX; OX, OX,  OX, OX; OX; OX; OX, OX,

JP=¢

[10m]

We can also rearrange equation [101] as follows

B OX; OX, OX, OX, OX3 OXq N OX; OX, OX, OX, OX3 OXq
9= ijk(@il OX, 0%, OX; OX; OX,  OX, 0K, OX, OX, OX, 0K,

OX, % OX, OX, O%; OXq N OX; OX; OX, OX, OX3 0%,

OX, OX; OX, OX; OX3 O%,  OX; OX, 0% OX; OX, OX;

[10n]

&%, OX, X, O%, OX, 0%, 0%, O%, OX, OX, OX, O,

Now we want to show that equations [10m] and [10n] give the same result. We see that the first
term in each equation is the same, but there are differences in the other terms. Since the
summation indices are arbitrary, we can exchange indices. However, when we permute indices,
we have to change the sign of the permutation operator. We can do this for each term, except
the first term in equation [10n], which requires no modification. Starting with the second term in
the first row of equation [10n] we can swap the j and k indices to give.

OX, OX; OX, OX, OX; OXq

P OX, OX; OX, OX, OX3 OXq
" a%, 0%, OX, OX, OX, OX,

%16 5% 3% X, OX. OX, OX
1 OK; OX3 OX; OX, OXy

[100]

The term on the right of equation [100] is the same as the last term in equation [10m]. In a similar
way we can swap the i and j indices in the first term in the second row of equation [10n] to show
that this is the same as the second term in the second row of equation [10m].

. OX; OX; OX, OX, OX3 OXq _ OX, O%; OX, OX, OX; OXq
" o%, OX; 0%, OX; X, K, " 0%, 0%, OX, OX; 0%, OX,

[10n]

We can repeat this process for the three remaining terms in each equation until we show, on a
term-by-term basis, that the equations for g and J° are the same. This completes the proof that
both quantities are the same.



