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Coordinate Transformations 

Introduction 

We want to carry out our engineering analyses in alternative coordinate systems.  Most students 
have dealt with polar and spherical coordinate systems.  In these notes, we want to extend this 
notion of different coordinate systems to consider arbitrary coordinate systems.  This prepares 
the way for the consideration of differential equations applied to irregular regions such as those 
used in finite-element computer programs.  Here we focus on the coordinate transformations 
required to convert the differential equations, originally expressed in Cartesian coordinate 
systems into other systems. 

Notation for different coordinate systems 

The general analysis of coordinate transformations usually starts with the equations in a 
Cartesian basis (x, y, z) and speaks of a transformation of a general alternative coordinate 
system (ξ, η, ζ).  This is sometimes represented as a transformation from a Cartesian system (x1, 
x2, x3) to the dimensionless system (ξ1, ξ2, ξ3).  The latter form of the transformation allows the 
use of a compact notation, introduced below, known as implicit summation over repeated indices.  
The task of determining the new coordinate system is the task of finding the appropriate 
transformations ξ = ξ(x, y, z), η = η(x, y, z), and ζ = ζ(x, y, z).  In the numerical subscript notation, 
these transformations become ξ1 =ξ1(x1, x2, x3), ξ2 =ξ2(x1, x2, x3), and ξ3 =ξ3(x1, x2, x3), These 
three transformations can be compactly written in vector notation: ξ = ξ(x). 

In numerical analysis of complex engineering systems we have to form a mesh that fits the 
boundaries of the system being analyzed.  In such cases, ξ, η, and ζ are the computational 
coordinates which typically are fit to a simple grid where ξi = i, ηj = j, and ζk = k.  The maximum 
and minimum values of the computational coordinates occur at the physical boundaries of the 
item being analyzed.  These computational coordinates then become the independent variables 
in the equations.  Thus we have to transform the differential equations we are analyzing from the 
Cartesian coordinate system to the use of ξ, η, and ζ as the independent variables.  In the 
discussion below we present a general way to do this transformation. 

The transformation of the differential equations requires information about transformation of the 
space derivatives.  The basic relations among the space derivatives are found from the equation 
for the total differential of our new coordinate, dξi, where ξi = ξi(x1, x2, x3).  Those basic equations 
express the fact that a differential change in any of the xi coordinates in the original coordinate 
system can cause a differential change in one of the ξi coordinates.  The general equation for dξi 
is given below. 
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Equation [1] is written three ways.  The first form shows all terms in the equation.  The second 
form notes that the three terms on the first equation are similar and can be regarded as a sum of 
three separate terms using summation index j.  The final form of equation [1] is similar to the 
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second form, except that the summation sign is missing.  This is a shorthand notation to simplify 
writing such equations.  In this shorthand, there is an implied summation over the terms with the 
repeated index.  (This is known as the Einstein summation convention.)  We will use this 
periodically to make it easier to write such equations.  The final i = 1,2,3 just before the equation 
number applies to all three equations for dξi; it reminds us that the equation for dξi applies for the 
three different values of i.  In the remainder of these notes we will use often write terms in full to 
remind readers who are not familiar with this convention that we are actually considering several 
terms by the implied summation. 

If we looked at the inverse problem of determining the differential changes in our original 
coordinate system (x1, x2, x3), from differential changes in the (ξ1, ξ2, ξ3) coordinate system, we 
would have the following analog of equation [1]. 
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We can write both equations [1] and [2] as matrix equations to show that the partial derivatives, 
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are related to each other as components of an inverse matrix.  In matrix form, 

equation [1] becomes. 
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Converting equation [2] to matrix form gives the following result. 
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Equations [3] and [4] can only be correct if the two three-by-three matrices that appear in these 
equations are inverses of each other.  That is, the partial derivatives are related by the following 
matrix inversion. 
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If a matrix, B, is the inverse of a matrix, A, the components of b are given by equation [6].  In that 
equation, Mij, denotes the minor determinant which is defined as follows.  If A is an n-by-n 
matrix, it has n2 minor determinants, Mij, which are the determinants of the (n-1) by (n-1) matrices 
formed if row i and column j are deleted from the original matrix.  The minor determinant is used 
to define the cofactor, Aij = (-1)i+jMij.  The components of the inverse matrix are defined in terms 
of this cofactor and the determinant of the original matrix, A. 
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The determinant of the matrix on the right hand side of equation [5] is known as the Jacobian 
determinant.  The usual expansion for a 3x3 determinant gives the following expression for J. 
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Using equation [6] for the components of the inverse matrix, with the determinant in the 
denominator set to J, we find the following relationships between the individual matrix 
components in equation [5].  These derivatives are called the metric coefficients for the 
transformation.  In the equations below we write these coefficients in both the general form with 
numerical subscripts and using the (x, y, z) and (ξ, η, ζ) notation.  The final term in each equation 
is an alternative notation for partial derivatives.  For example, xξ is a shorthand for the partial 
derivative ξ∂∂x .1 

                                                           
1 We can view equations [5] and [6] as follows.  We are trying to find the coefficients of the inverse matrix, 
bij.  Equation [5] shows that these components are given by the equation jiij xb ∂∂= ξ .  (I.e., the row 

index, i, is in the numerator and the column index j is in the denominator.)  According to equation [6], after 
interpreting the determinant as the Jacobian, J, then we can write JAxb jijiij =∂∂= ξ .  But Aji is the 

cofactor of the term in row j and column i of the Jacobian.  From equation [5], we see that the term in this 



Coordinate transformations L. S. Caretto, April 26, 2010 Page 4 

 

 
J

yzzyyzzy
Jx

or
xxxx

Jx
ζηζη

ζηζη
ξ

ξξξξ
ξ −

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂ 11

3

2

2

3

3

3

2

2

1

1  [8] 

 
J

zxzxzxzx
Jy

or
xxxx

Jx
ζηηζ

ζηηζ
ξ

ξξξξ
ξ −

=⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂ 11

3

3

2

1

2

3

3

1

2

1  [9] 

 
J

yxyxyxyx
Jz

or
xxxx

Jx
ηζζη

ηζζη
ξ

ξξξξ
ξ −

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂ 11

2

2

3

1

3

2

2

1

3

1  [10] 

 
J

zyzyzyzy
Jx

or
xxxx

Jx
ζξξζ

ζξξζ
η

ξξξξ
ξ −

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂ 11

3

3

1

2

1

3

3

2

1

2  [11] 

 
J

zxzxzxzx
Jy

or
xxxx

Jx
ξζζξ

ξζζξ
η

ξξξξ
ξ −

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂ 11

1

3

3

1

3

3

1

1

2

2  [12] 

 
J

yxyxyxyx
Jz

or
xxxx

Jx
ξζζξ

ξζζξ
η

ξξξξ
ξ −

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂ 11

1

2

3

1

3

2

1

1

3

2  [13] 

 
J

zyzyzyzy
Jz

or
xxxx

Jx
ξηηξ

ξηηξ
ζ

ξξξξ
ξ −

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂ 11

1

3

2

2

2

3

1

2

1

3  [14] 

 
J

zxzxzxzx
Jy

orxxxx
Jx

ηξξη

ηξξη
ζ

ξξξξ
ξ −

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂ 11

2

3

1

1

1

3

2

1

2

3  [15] 

 
J

yxyxyxyx
Jz

or
xxxx

Jx
ηξηξ

ηξηξ
ζ

ξξξξ
ξ −

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂ 11

1

2

2

1

2

2

1

1

3

3  [16]] 

The simpler relationships for two-dimensional coordinate systems can be found from these 
equations by recognizing that in such coordinates, there is no variation in the third dimension.  
This means that there is no variation of x or y with ζ.  Thus all derivative of x and y with respect to 
ζ are zero.  We set the derivative zζ = 1 to modify equations [8] to [16] for two-dimensional 
systems.  This is equivalent to assuming a coordinate transformation of z = ζ for this conversion.  
The results of converting equations [8], [9], [11] and [12] to two-dimensional forms are shown 
below 
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position is ijx ξ∂∂ .  Thus we can make the following general statement about the results shown in 

equations [8] to [16]: ji x∂∂ξ equals the cofactor of ijx ξ∂∂ divided by the Jacobian, J. 
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For the two dimensional case, the Jacobian has the simple form of a two-by-two determinant. 
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(Note that equation [16] is correct when we convert from three dimensions to two by setting z = ζ.  
The left hand side, zζ, is equal to one.  The terms in braces on the left-hand side are just the 
definition of the Jacobian, J, for the two-dimensional case.  Thus both sides of equation [16] are 
equal to one in the two-dimensional case.) 

Transforming differential equations 

We are now ready to transform the various vector operators from Cartesian coordinates to our 
arbitrary coordinate system.  We begin with the divergence because this is a transformation of 
first derivatives.  Subsequently we will consider the Laplacian which requires a transformation of 
second derivatives.  As usual we will regard second derivatives as first derivatives of first 
derivatives and be able to apply the results of the first-derivative transformations to the results for 
second derivatives. 

Transforming the divergence 

The divergence of a vector with Cartesian components F1, F2, and F3, in the x, y, and z 
coordinate directions (here expressed as x1, x2, and x3) is written as follows.  (The second form 
uses the implied summation over the repeated index, i.) 
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In computational fluid dynamics equations, the convection terms, with Fi = ρuiφ, are given by this 
divergence expression. 

To carry out the grid transformation for the divergence, we recognize each Cartesian coordinate 
can depend on all the other coordinates.  Because of this, a change in any of the transformed 
coordinates can be reflected as a change in any of the original coordinates.  We can reflect this 
dependence by writing the following equation to convert first derivatives in our Cartesian 
coordinate system (with respect to any Cartesian coordinate, xi) to first derivatives in new 
coordinate system where the coordinate variables are called ξ, η, and ζ or ξ1, ξ2, and ξ3 or ξj in 
general. 
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The second form of this equation has an implied summation over the repeated j index.  We have 
to apply this equation to each of the three terms in our divergence equation [22]. 
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We can simplify the number of terms that we have to write by using the implied summation over 
repeated indices of the summation convention.  Here we repeat two indices, which allows us to 
rewrite all nine terms on the left of equation [24] in the following compact notation. 
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The conversion of this form into a more useful result does not follow an obvious path.  The initial 
step in the conversion is done by first multiplying by the Jacobian of the transformation, J, and 
applying the chain rule of differentiation to write the resulting JXdF terms as d(JFX) – Fd(JX).  
This gives the following result. 
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We continue to have two repeated indices that imply summation over both i and j.  We can show 
that the final term, multiplied by Fi, is zero for each value of i by using the metric coefficient 
relationships in equations [8] to [16].  We first get the following result for i = 1, using equations [8], 
[11], and [14]. 
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ξ
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J
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J
x

J
x

J j

j [27] 

Carrying out the indicated differentiations gives the combination of mixed, second-order partial 
derivatives shown below.  Each of these derivatives occurs two times, once with a plus sign and 
once with a minus sign.  (The order of differentiation is also different, but mixed second order 
derivatives are the same regardless of the order of differentiation.)  A letter below the term with a 
plus or minus sign indicates the matching terms that cancel.  For example, the term labeled (+A) 
has a plus sign in the equation that cancels the term labeled (-A). 
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 [28] 

This shows that the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

i

j

j
i x

JF
ξ

ξ
term in equation [45] is zero when i = 1.  The proof that this 

term is zero for i = 2 and i = 3 follows the same approach used above and is left as an exercise 
for the interested reader.  With all these terms zero, equation [45] gives the following result for the 
transformed convection terms. 

 ⎟⎟
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∂
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∂
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∂
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∂
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ξ
ξ

ξ
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1FF  [29] 

We can define the components of the differentiation by ξj in the new coordinate system as 
follows. 
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j
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∂
+

∂
∂
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∂
∂
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∂
∂

=
ξξξξ

 [30] 

With this definition, the divergence in our new coordinate system, with the new components Gj, 
becomes 

 
j

j

i

j
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j
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ξ
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∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
11F  [31] 

Transforming the Laplacian 

We can extend this result to derive a form for the Laplacian operator in the new coordinate 
system.  The Laplacian can be viewed as the divergence of a gradient.  In Cartesian coordinates 
the Laplacian is written as follows. 
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∂
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∂
∂
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2 )( eee

x
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x
u

x
uDivugradDiv

x
u

x
u

x
uu  [32] 

Here we have used e(1), e(2), and e(3) to represent the usual unit vectors i, j, and k.  We see that 
the Laplacian represents the divergence of a vector whose components Fi = ixu ∂∂ .  However, 
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we have just found an expression for the divergence in our new coordinate system by the 
combination of equations [30] and [31].  Applying equation [30] with Fi = ixu ∂∂ gives. 
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 [33] 

We want the derivatives of u with respect to our new coordinate system.  To do this we use the 
general relationship for partial derivatives that gives ixu ∂∂ as derivatives of the new coordinate 
system; we can show all terms or use the summation convention. 
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 [34] 

We can combine equations [33] and [34] to get a definition of Gj that involves an implied 
summation over the repeated indices i and k.  In equation [35] we show all nine terms that result 
from the implied summation over these two repeated indices. 
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u
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ξ
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ξ
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ξ
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 [35] 

With this definition for Gj, we can use equation [31] to write our Laplacian with the implied 
summation over the j index. 

 ⎥
⎦

⎤
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⎣

⎡
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⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

=∇
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J
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J
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ξξ
ξξξ

112  [36] 

Equation [36] has three repeated indices (i, j, and k) which imply a summation over all possible 
values of each index.  This gives a total of 27 terms in equation [36].  The three explicit terms for j 
= 1, 2, and 3 are shown below.  Each of these terms has an implied summation over the repeated 
i and k indices. 
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∂
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∂
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∂
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∂
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∂
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[37] 

Another view of equation [36], shown below, contains all the terms for j = 1.  The terms for j = 2 
and j = 3 are left as an implied summation over i and k. 
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 [38] 

Equation [36] provides the most comprehensive form for the Laplacian in an arbitrary coordinate 
system.  We can apply it to the simplest example of cylindrical-coordinate systems where x = r 
cos(θ), y = r sin(θ) and z = z.  In our generalized coordinate system, the Cartesian coordinates 
are found from the new coordinates by the following form of these transformations: x1 = ξ1 
cos(ξ2), x2 = ξ1 sin(ξ2) and x3 = ξ3.  The derivatives for this system are written below. 
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 [39] 

We use equation [7] to compute J using these derivatives. 
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[40] 

We now have to use equations [8] to [16] to compute the derivatives ji x∂∂ξ from the derivatives 
found in equation [35] and the Jacobian. 
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Before substituting these derivatives into equation [36] we note that we can rewrite equation [36] 
as follows, defining Bkj as the product of two different partial derivatives with respect to xi summed 
over all three values of i. 
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We can write the explicit definition of Bkj (without the implied summation) as follows.  Note that Bkj 
= Bjk. 
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Using the derivatives in equations [41] to [49] (and the result that J = ξ1), we can write the factor 
Bkj from equation [50]. 
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We see that all the values of Bjk are zero unless j = k.  This will always be the case for an 
orthogonal coordinate system.  For such a system we can rewrite equation [50] to set all terms 
where j ≠ k to zero. 
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Using the values of B11, B22, and B33, from equations [52], [55], and [57], and the result from 
equation [40] that J = ξ1., we can write our Laplacian for cylindrical polar coordinates. 
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Since the three coordinate directions are independent we can remove the x1 terms from the x2 
and x3 derivatives and finally use the conventional r, θ, z coordinates to give the final result for the 
Laplacian in cylindrical coordinates. 
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Laplace’s equation with variable properties 

As noted above, the Laplacian can be viewed as the divergence of a gradient.  Typically the 
gradient times some physical coefficient, Γ, represents a flux term.  If the physical coefficient is 
constant, we can bring it outside the outer divergence operator and merge it with other terms in 
the equation.  However, if Γ is not a constant, we have to leave it inside the outer divergence 
operator.  In this case, we replace equation[ 32] with the following equation in Cartesian 
coordinates. 
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Here we have used e(1), e(2), and e(3) to represent the usual unit vectors i, j, and k.  We see that 
the Laplacian represents the divergence of a vector whose components Fi = ixu ∂∂ .  However,  

If we had included this G coefficient in our original derivation we would have obtained the 
following result in place of equations [36] and [50]. 
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Vectors, areas and volumes in the new coordinates 

Position vector and differential length 

To start our considerations of vectors, areas, and volumes in a general coordinate system, we 
consider a position vector, r, that is defined in a Cartesian coordinate space as follows with unit 
vectors e(x), e(y) and e(z).  The position vector is defined as follows in a Cartesian system.  We use 
either (x, y, z) or (x1, x2, x3) as our Cartesian coordinates.. 

 )3(3)2(2)1(1)()()( eeeeeer xxxzyx zyx ++=++=  [63] 

The derivative of the position vector, with respect to a particular new coordinate, ξi, is given by 
equation [64], which is also used to define the base vector, g(i), in the new coordinate system. 
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In the last expression, we use the summation convention over the repeated index j.  The three 
base vectors defined in equation [64] are the equivalent of the usual base vector that we have in 
our Cartesian coordinate system.  (However these g(j) are generally not normal vectors.  We can 
use these base vectors to compute the differential vector length, dr, along any path in our new 
coordinate system. 

 3)3(2)2(1)1()(3
3

2
2

1
1

ξξξξξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ddddddddd iii
i

ggggrrrrr ++==
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

=  [65] 

In the two middle terms of equation [65] we have used the summation convention.  In future 
equations we will use this convention – the summation over repeated indices – without further 
comment.  We can write an elementary length in Cartesian space, ds, as the magnitude of the dot 
product of dr with itself. 

 ( ) ( ) jiijjijijjii ddgddddddds ξξξξξξ =•=•=•= )()()()(
2)( ggggrr  [66 

Note that all the terms involving indices i and j have both indices repeated.  Thus we sum over 
both indices and we have nine terms in these cases. 
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Metric coefficients 

The dot product of two base vectors, g(i) and g(j) is defined gij, one of the nine components of a 
quantity known as the metric tensor.  From the definition of g(i) in equation [64], we can write gij as 
follows.  Here we use the following equation that summarizes the fact that the base vectors in the 
Cartesian coordinate system are unit vectors which are mutually perpendicular.  (Such a system 
of vectors is called orthonormal): e(i)·e(j) = δij. 
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For example, in a cylindrical coordinate system, y1 = x1cos(x2), y2 = x1sin(x2) and y3 = x3.  We 
have the following partial derivatives. 
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Substituting these derivatives into equation [67], allows us to compute some of the gij components 
for the cylindrical coordinate system. 
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[69] 

The remaining, unique, off-diagonal terms, g13 and g23 can both be shown to be zero.  The 
remaining off diagonal terms, g21, g31, and g32 are seen to be symmetric by the basic form of 
equation [68].  These terms will also be zero. 

When the metric tensor has zero for all its off-diagonal terms, the resulting coordinate system is 
orthogonal.  In an orthogonal system, each base vector is perpendicular to the other two base 
vectors at all points in the coordinate system.  The differential path length given by equation [66], 
which we use to define a new term, for orthogonal systems only hi = gii. 
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In the equation [69] example of cylindrical coordinates, we had g11 = h1 = g33 = h3 = 1, and 
g22 = h2 = x1 = r.  Thus the three terms in equation [70] are (dx)2, (rdθ)2 and (dz)2.  We see that 

h2 = r multiplies the differential coordinate, dθ, and results in a length.  This is a general result for 
any hi coefficient; this coefficient is a factor that takes a differential in a coordinate direction and 
converts it into a physical length.  This factor also appears in operations on vector components 
for orthogonal systems.  These factors are usually written in terms of Cartesian coordinates (x, y, 
and z) by the following equations, that are a combination of equations [70] and [67]. 
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Differential area 

Now that we have an expression for the differential length in our new coordinate system, we can 
derive equations for differential areas and volumes.  From equation [66] we see that the length of 
a path along which only one coordinate, say xk, changes, is given by the equation gkkdxk (no 
summation intended); the vector representation of this path is g(k)dxk.  To get an differential area 
from two differential path lengths, we take the vector cross product of these two differential 
lengths.  The vector cross product gives the product of two perpendicular components of the 
differential path lengths to calculate an differential area, (dS)i. 
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The vector that results from the cross product is in the plus or minus xi coordinate direction 
depending on which direction the surface is facing.  The notion that i, j, and k are cyclic means 
that we use only the following three combinations (i = 1, j = 2, k = 3), (i = 2, j = 3, k = 1), or (i = 3, j 
= 1, k = 2).  In order to compute the magnitude of the surface area, we need to compute the 
magnitude of the vector cross product |g(j) x g(k)|= |g(j) x g(k)|•|g(j) x g(k)|.  To obtain a useful result 
from this definition, we need to use the following vector identity. 

 ))(())(()()( CBDADBCADCBA ••−••=×•×  [73] 

Using A = C = g(j) and B = D = g(k), gives the following result for the cross product of base 
vectors. 

 2
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With this expression, we can write the magnitude of the differential surface area in direction i as 
follows. 
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Differential volume 

We can take get a differential volume element by taking the vector dot product of differential area 
element in equation [23] and the differential length element normal to the area.  This gives the 
differential volume element by the following equation. 
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Just as we did for the differential area element, we also seek the magnitude of the vector term in 
the volume element equation.  This requires that we find the term |g(i)•(g(j) x g(k))| = 

|g(i)•(g(j) x g(k))|•|g(i)•(g(j) x g(k))|.  To start this, we need the following vector identity. 

 [ ] [ ] [ ]22 )()()()()( CBACBCBAACBA ××−×•×•=×•  [76] 

We can use the identity in equation [24] to substitute for the term (B x C) • (B x C).  We can also 
use the following identity to substitute for the A x (B x C) term. 

 )()()( BACCABCBA •−•=××  [77] 

Since we have only three basis vectors, we will use the following base vectors from equation [76] 
in equation [77]: A = g(1) , B = g(2), and C = g(3).  Making these substitutions and recognizing that 
the dot product g(i)•g(j) = gij, the metric coefficient, gives the following result. 
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In rearranging equation [78], we have made use of the symmetry relationship for the metric tensor 
components, gji = gij, in obtaining the third line.  We see that this final line is just the equation for 
the determinant of a 3x3 array.  If we write this determinant as g, we have the following result for 
the volume element. 

 321321 )( ξξξξξξ dddgDetdddgdV ij==  [30] 

The appendix contains a proof that the value of g is the same as the value of the Jacobian 
determinant in equation [7]. 

If we return to our previous example of cylindrical coordinate systems for which g11 = g33 = 1, g22 
= x1

2 = r2, and g12 = g21 = g13 = g31 = g23 = g33 = 0, the value of g is simply the product of the 
diagonal terms which is equal to x1

2 or r2 in the conventional notation.  For this system, equation 
[30] for dV gives the usual result for the differential volume in a cylindrical coordinate system, 
dV = rdrdθdz. 

Exercise: For the spherical polar system the three coordinates are x1, the distance from the 
origin to a point on a sphere, x2, the counterclockwise angle on the x-y plane from the x axis to 
the projection of the r coordinate on the x-y plane, and x3 = the angle from the vertical axis to the 
line from the origin to the point.  (These coordinates are more conventionally called r, θ, and φ.)  
The transformation equations from Cartesian coordinates (y1, y2, and y3) to spherical polar 
coordinates are given by the following equations: x1 = y1

2 + y2
2 + y3

2, x2 = tan-1(y2/y1), and x3 = 
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tan-1[ y1
2 + y2

2/y3].  The inverse transformation to obtain Cartesian coordinates from spherical 
polar coordinates is: y1 = x1 cos(x2)sin(x3), y2 = x1 sin(x2)sin(x3), and y3 = x1cos(x3).  Find all 
components of the metric tensor for this transformation.  Verify that this is an orthogonal 
coordinate system.  What are the three possible differential areas for this system?  What is the 
volume element for this system? 

Vector components in generalized coordinate systems 

The simplest vector to consider in a generalized coordinate system is the velocity vector, v, 
whose components are the derivatives of the coordinates with respect to time.  We can define the 
velocity component in a particular direction, xi, by the symbol vi.  The definition of vi in the 
arbitrary coordinate system, and its relationship to the Cartesian coordinate system is shown 
below, where we have used equation [11] or [12] for the coordinate transformation, substituting 
the notation of yi for the Cartesian coordinates. 
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We see that the terms dyi/dt on the right-hand side of equation [31] are just the velocity 
components in the Cartesian coordinate system.  In addition, there is no particular reason to 
assume that the original system is Cartesian, we could equally well use the notation x̄i for the 
alternative coordinate system and the notation v̄i for the velocity components in that system.  This 
gives the following equation for the transformation of velocity components from one coordinate 
system to another. 
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This transformation equation for components of the velocity vector can be contrasted with the 
transformation equation for the components of the gradient vector.  The gradient of a scalar, A; 
written as A∇ , has the following equation in Cartesian coordinates. 
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If we denote one component of this vector as ai, we can write this component and its coordinate 
transformation into a new system  
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 [34] 

If we compare equation [34] for the transformation of the components of a gradient vector with 
equation [32] for the transformation of the components of a velocity vector, we see that there is a 
subtle difference in the equations.  For transforming the gradient vector from the old āi 
components to the new ai components, the partial derivatives of the coordinates have x̄i in the 
numerator.  For the transformation of the velocity components from the old coordinate system, v̄i, 
into the vi components of the new system, the old coordinates, x̄i, appear in the denominator.  It 
thus appears that we have two different equations for the transformation of a vector. 
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What we have, in fact, is two different kinds of vectors defined by their transformation equations.  
A vector that is transformed from one coordinate to system to another using equation [32] is 
called a contravariant vector.  One that transforms according to equation [34] is called a 
covariant vector.  (You can remember these names by if you remember that covariant vectors 
have transformation relations for vector components in which the old coordinates are collocated 
with the old vector components in the numerator of the transformation.  The transformation 
relations for contravariant vectors have the old coordinates and the old vector components 
located in the opposite locations – old vector components in the numerator and old coordinates in 
the denominator.)  In accordance with these names we call the velocity a contravariant vector and 
the gradient a covariant vector. 

Although there are naturally two types of vectors, according to their transformation relationships, 
these differences disappear for an orthogonal coordinate system.  In addition, one can express a 
covariant vector by its contravariant components and vice versa.  The covariant vector 
components represent the components along the coordinate lines.  The contravariant 
components represent the components along normal to a plane in which the coordinate value is 
constant.  A vector, such as velocity, always has the same magnitude and direction at a given 
location in a flow.  The only thing that varies in different coordinate systems is the say in which we 
choose to represent the vector.  In an orthogonal system, only our choice of coordinate system 
changes the representation of the vector.  In a nonorthogonal system we choose not only the 
coordinate system, but also whether we want to represent the vector by its covariant or 
contravariant components. 

Although much of the original work on boundary fitted coordinate systems used different 
representations of velocity components, most current day approaches used a mixed formulation.  
The coordinate system is nonorthogonal, but we use Cartesian vector components.  This is like 
using a r-θ-z coordinate system, but leaving the velocity components as vx, vy, and vz.  This is not 
a wise choice, but it is possible.  When we are dealing with complex boundary-fitted coordinate 
systems, the use of Cartesian vector components does produce simpler results for the CFD 
calculations. 

Appendix – Proof that J = g1/2 

If we write the typical element in the Jacobian in equation [7] determinant as Lij, we see that this 
element can be expressed by the following equation.  (Here we are considering the 
transformation from Cartesian coordinates, x1, x2, x3, to a new coordinate system ξ1, ξ2, ξ3. 
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We can write the value of a three-by-three determinant using the permutation operator, εijk, which 
is defined as follows: εijk, is zero if any two of its indices are the same; it is +1 if the indices are an 
even permutation of 123 and it is –1 if the indices are an odd permutation of 123.  A permutation 
of 123 is odd or even if an odd or even number of exchanges is required to get from 123 to the 
given permutation.  For example 123 requires 0 exchanges and is even; 132, 213, and 321 
require one exchange and are odd; 231 and 312 require two exchanges and are even.  All the 
values of εijk are shown in the table below. 

k = 1 k = 2 k = 3 
 j = 1 j = 2 j = 3  j = 1 j = 2 j = 3  j = 1 j = 2 j = 3 
i = 1 0 0 0 i = 1 0 0 -1 i = 1 0 1 0 
i = 2 0 0 1 i = 2 0 0 0 i = 2 -1 0 0 
i = 3 0 -1 0 i = 3 1 0 0 i = 3 0 0 0 



Coordinate transformations L. S. Caretto, April 26, 2010 Page 18 

 

The table shows that only six of the εijk values are nonzero.  Using this operator and the 
summation convention over repeated indices gives the following formula for a three-by-three 
determinant 
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3

1
321)( εε == ∑∑∑

= = =

 [A-2] 

Although there are a total of 27 possible terms in this summation, all but six of them have a zero 
value for εijk ; three of the nonzero values are +1 and three are -1 which will give us the usual 
formula for the expansion of a three-by-three determinant.  An equivalent formula reverses the 
subscripts of the amn terms in this equation. 
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= = =

 [A-3] 

Using these expressions, we can define the Jacobian determinant as follows 

 321321 kjiijkkjiijk LLLJLLLJ εε ==  [A-4] 

We can next substitute equation [A-1] for Lij into equation [A-4]. 
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To compute J2, with a view to comparing it to the determinant, g, we write the two factors in J2 
with the two different forms of equation [10d], being careful to use two different sets of indices to 
note that each determinant has a separate expansion.  This gives the following result for J2. 
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If we expand the εmno permutation operation in this equation we get the following result. 
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 [10f] 

 Next, we use equation [10b] to write the determinant of the metric tensor, g. 

 kjiijk gggg 321ε=  [10g] 
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From equation [18], we can write the definition of gij, (without the implied summation over the 
repeated index.) 
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We can combine equations [10gf] and [10h] to obtain the following expression for the 
determinant, g: 
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Multiplying out the terms in parentheses gives the following equation for g. 
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[10j] 

We want to show that equation [10f] for J2 gives the same result as equation [10j] for g.  We see 
these equations are sums of terms in that have the same general form.  Each term is the product 
of six partial derivatives that can be expressed as ji xx ∂∂ .  Furthermore the denominators of the 
partial derivatives in each term have the six common indices i, j, k, 1, 2, and 3.  However, the 
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indices in the numerator of the partial derivatives in equations [10f] and [10j] are not the same.  
Although both equations limit the indices to 1, 2 or 3, equation [10f] has each index occurring 
exactly two times, while equation [10j] has terms where one or two indices may not be present in 
the numerator of the partial derivative. 

The difference in the partial-derivative numerators between equations [10f] and [10j], as well as 
the larger number of terms in equation [10j], suggests that some terms in equation [10j] will 
cancel when the permutation operator is applied.  We can show, by one example, that this will 
always be the case when one of the indices is missing from the numerator terms in equation [10j].  
Examine the typical term where there are only two indices in the numerator.  The sum of all six 
terms generated by the permutation operator in this case is shown below.  Identical terms 
occurring with both a plus and minus sign are indicated by capital letters with a plus or minus 
sign, below the term. 
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 [10k] 

We see that these terms all cancel.  Although we have made this demonstration in the case 
where the first four indices were the same and the last two indices were the same, we would 
obtain the same result, regardless of the location of the different indices.  We thus conclude that 
all terms in equation [10h-1b], which do not have all three indices in the numerator will vanish 
when the permutation operator is applied.  Eliminating all such terms from equation [10j] gives the 
following result. 
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 [10l] 

We want to have the same result for equations [10f] and [10l].  It is not apparent that these are 
then same.  In fact, the terms in [10l] all have positive signs, but half the terms in equation [10f] 
have negative signs.  To show that these are the same require further rearrangement.  We start 
by rearranging equation [10f] to make it look more like [10l]. 
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We can also rearrange equation [10l] as follows 
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 [10n] 

Now we want to show that equations [10m] and [10n] give the same result.  We see that the first 
term in each equation is the same, but there are differences in the other terms.  Since the 
summation indices are arbitrary, we can exchange indices.  However, when we permute indices, 
we have to change the sign of the permutation operator.  We can do this for each term, except 
the first term in equation [10n], which requires no modification.  Starting with the second term in 
the first row of equation [10n] we can swap the j and k indices to give. 
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The term on the right of equation [10o] is the same as the last term in equation [10m].  In a similar 
way we can swap the i and j indices in the first term in the second row of equation [10n] to show 
that this is the same as the second term in the second row of equation [10m]. 
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We can repeat this process for the three remaining terms in each equation until we show, on a 
term-by-term basis, that the equations for g and J2 are the same.  This completes the proof that 
both quantities are the same. 

 

 


